Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Am Soc Nephrol ; 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2234600

ABSTRACT

BACKGROUND: In March 2021, the United States implemented a new kidney allocation system (KAS250) for deceased donor kidney transplantation (DDKT), which eliminated the donation service area-based allocation and replaced it with a system on the basis of distance from donor hospital to transplant center within/outside a radius of 250 nautical miles. The effect of this policy on kidney discards and logistics is unknown. METHODS: We examined discards, donor-recipient characteristics, cold ischemia time (CIT), and delayed graft function (DGF) during the first 9 months of KAS250 compared with a pre-KAS250 cohort from the preceding 2 years. Changes in discards and CIT after the onset of COVID-19 and the implementation of KAS250 were evaluated using an interrupted time-series model. Changes in allocation practices (biopsy, machine perfusion, and virtual cross-match) were also evaluated. RESULTS: Post-KAS250 saw a two-fold increase in kidneys imported from nonlocal organ procurement organizations (OPO) and a higher proportion of recipients with calculated panel reactive antibody (cPRA) 81%-98% (12% versus 8%; P<0.001) and those with >5 years of pretransplant dialysis (35% versus 33%; P<0.001). CIT increased (mean 2 hours), including among local OPO kidneys. DGF was similar on adjusted analysis. Discards after KAS250 did not immediately change, but we observed a statistically significant increase over time that was independent of donor quality. Machine perfusion use decreased, whereas reliance on virtual cross-match increased, which was associated with shorter CIT. CONCLUSIONS: Early trends after KAS250 show an increase in transplant access to patients with cPRA>80% and those with longer dialysis duration, but this was accompanied by an increase in CIT and a suggestion of worsening kidney discards.

2.
Am J Transplant ; 21(11): 3785-3789, 2021 11.
Article in English | MEDLINE | ID: covidwho-1304071

ABSTRACT

The impact of COVID-19 vaccination on the alloimmunity of transplant candidates is unknown. We report a case of positive B cell flow cytometry crossmatch in a patient waiting for second kidney transplantation, 37 days after receiving the COVID-19 vaccine. The preliminary crossmatch, using sample collected before COVID-19 vaccination, was negative. The antibodies to mismatched donor HLA-DR7 were detected only with multi-antigen beads but not with single-antigen beads, excluding possible prozone effects in solid-phase antibody assays. The crossmatches were positive with HLA-DR7-positive surrogates (n = 2) while negative with HLA-DR7-negative surrogates (n = 3), which confirms the HLA-DR7 alloreactivity. The antigen configurations on B lymphocytes are similar to that on the multi-antigen beads while distinct from the single-antigen beads. HLA-DR7 was the repeating mismatched antigen with the failing first kidney allograft. The newly emerged antibody to HLA-DR7 probably is the consequence of bystander activation of memory response by the COVID-19 vaccination. This case highlights the importance of verifying allo-sensitization history and utilizing multiple assays, including cell-based crossmatch and solid-phase assays with multi-antigens. COVID-19 immunization may deserve special attention when assessing the immunological risk before and after organ transplantation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Flow Cytometry , HLA Antigens , Histocompatibility Testing , Humans , Isoantibodies , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL